Structural and electrical properties of In-doped vanadium oxide thin films prepared by spray pyrolysis

Authors

  • Pilevar Shahri, Raheleh
  • Shafei, Soniya
  • Tabatabai Yazdi, Shekoufeh
Abstract:

The In-doped vanadium pentoxide nanostructures with different doping levels including 0, 10, 20 and 30 at.% were prepared by the spray pyrolysis technique. The prepared thin films were characterized by the x-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD results revealed that the films were crystalline in tetragonal phase. Increasing the In-doping level made the structure more disordered and decreased the crystallite size up to more than 50% for V2O5: In30at.% with respect to the pristine sample. The SEM results showed single phased nanorod- and nanobelt-shaped V2O5 structures with average diameters of 50-100 nm. The Hall effect measurements showed that all the involved films are n-type semiconductors whose resistance increases with In content; this also can be related to the enhanced structural disorder of the samples.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Structural, Electrical and Optical Properties of Molybdenum Oxide Thin Films Prepared by Post-annealing of Mo Thin Films

Molybdenum thin films with 50 and 150 nm thicknesses were deposited on silicon substrates, using DC magnetron sputtering system, then post-annealed at different temperatures (200, 325, 450, 575 and 700°C) with flow oxygen at 200 sccm (standard Cubic centimeter per minute). The crystallographic structure of the films was obtained by means of x-ray diffraction (XRD) analysis. An atomic force micr...

full text

Structural, Electrical and Optical Properties of Molybdenum Oxide Thin Films Prepared by Post-annealing of Mo Thin Films

Molybdenum thin films with 50 and 150 nm thicknesses were deposited on silicon substrates, using DC magnetron sputtering system, then post-annealed at different temperatures (200, 325, 450, 575 and 700°C) with flow oxygen at 200 sccm (standard Cubic centimeter per minute). The crystallographic structure of the films was obtained by means of x-ray diffraction (XRD) analysis. An atomic force micr...

full text

The effect of Ga-doping on the structural and optical properties of ZnO thin films prepared by spray pyrolysis

In this research, zinc oxide thin films with gallium impurity have been deposited using the spray pyrolysis technique. The structural and optical properties of these films are investigated as a function of gallium doping concentrations. The ZnO and ZnO:Ga  films grown at a substrate temperature of 350 ºC with gallium doping concentrations from 1.0 to 5.0.%. The XRD analysis indicated that ZnO f...

full text

Electrical Properties of CZO Films Prepared by Ultrasonic Spray Pyrolysis

CuZnO (CZO) films have attracted increasing amounts of attention due to their promising potential applications in semiconductor devices. ZnO shows n-type conductivity, and attempts have been made to dope several elements in ZnO to improve the electrical properties. This study investigated the electrical property transitions of CZO films and determined the copper concentration at which the condu...

full text

Studies on Structural and Optical Characterization of In-Zn-S Ternary Thin Films Prepared by Spray Pyrolysis

Thin films of indium doped zinc sulfide (ZnS) for different indium (In) concentrations (x=0.0 - 0.8) were deposited onto glass substrate by spray pyrolysis method at 523K temperature. Aqueous solution of zinc acetate, indium chloride and thiorea were used to deposit the In-Zn-S film. The deposited thin films were characterized by Energy dispersive X-ray (EDX), Scanning electron microscopy (SEM)...

full text

Structural and Optical Properties of ZnS Thin Films Prepared by Spray Pyrolysis Technique

Zinc Sulfide (ZnS) is important II-VI semiconductors material for the development of various modern technologies and photovoltaic applications. ZnS thin film was prepared by using chemical spray pyrolysis technique. The spray solutions contains ZnCl2 and SC(NH2)2 with molar concentration 0.1M/L. ZnS thin films was growth onto hot glass substrates at substrates temperature 400C. The Structure of...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 28  issue 1

pages  259- 266

publication date 2020-03

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023